Deep Reinforcement Learning for Robotic Manipulation - The state of the art
نویسنده
چکیده
The focus of this work is to enumerate the various approaches and algorithms that center around application of reinforcement learning in robotic manipulation tasks. Earlier methods utilized specialized policy representations and human demonstrations to constrict the policy. Such methods worked well with continuous state and policy space of robots but failed to come up with generalized policies. Subsequently, high dimensional non-linear function approximators like neural networks have been used to learn policies from scratch. Several novel and recent approaches have also embedded control policy with efficient perceptual representation using deep learning. This has led to the emergence of a new branch of dynamic robot control system called deep reinforcement learning(DRL). This work embodies a survey of the most recent algorithms, architectures and their implementations in simulations and real world robotic platforms. The gamut of DRL architectures are partitioned into two different branches namely, discrete action space algorithms(DAS) and continuous action space algorithms(CAS). Further, the CAS algorithms are divided into stochastic continuous action space(SCAS) and deterministic continuous action space(DCAS) algorithms. Along with elucidating an organisation of the DRL algorithms this work also manifests some of the state of the art applications of these approaches in robotic manipulation tasks.
منابع مشابه
Composable Deep Reinforcement Learning for Robotic Manipulation
Model-free deep reinforcement learning has been shown to exhibit good performance in domains ranging from video games to simulated robotic manipulation and locomotion. However, model-free methods are known to perform poorly when the interaction time with the environment is limited, as is the case for most real-world robotic tasks. In this paper, we study how maximum entropy policies trained usi...
متن کاملDeep Reinforcement Learning for Robotic Manipulation
Reinforcement learning holds the promise of enabling autonomous robots to learn large repertoires of behavioral skills with minimal human intervention. However, robotic applications of reinforcement learning often compromise the autonomy of the learning process in favor of achieving training times that are practical for real physical systems. This typically involves introducing hand-engineered ...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملLearning Visual Feature Spaces for Robotic Manipulation with Deep Spatial Autoencoders
Reinforcement learning provides a powerful and flexible framework for automated acquisition of robotic motion skills. However, applying reinforcement learning requires a sufficiently detailed representation of the state, including the configuration of task-relevant objects. We present an approach that automates state-space construction by learning a state representation directly from camera ima...
متن کاملImproving Stochastic Policy Gradients in Continuous Control with Deep Reinforcement Learning using the Beta Distribution
Recently, reinforcement learning with deep neural networks has achieved great success in challenging continuous control problems such as 3D locomotion and robotic manipulation. However, in real-world control problems, the actions one can take are bounded by physical constraints, which introduces a bias when the standard Gaussian distribution is used as the stochastic policy. In this work, we pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1701.08878 شماره
صفحات -
تاریخ انتشار 2017